Remarkable Anti-Fouling Performance of TiO2-Modified TFC Membranes with Mussel-Inspired Polydopamine Binding
نویسندگان
چکیده
It has been proven that a versatile bio-glue, polydopamine, can firmly bind TiO2 (titanium dioxide) nanoparticles on thin film composite (TFC) membranes. In this work, the anti-fouling behaviour of this novel polydopamine-TiO2-modified membrane is evaluated, based on the static bovine serum albumin (BSA) surface adhesion of the membranes and the relative flux decline. The results show that the anti-fouling performance of this new membrane is significantly improved in dark conditions when compared with the neat TFC membrane and the membranes only modified by polydopamine or TiO2. When filtrating a 0.5 g·L−1 BSA solution in dark conditions, the flux of the polydopamine-TiO2-modified membrane remains constant, at 95% of its pure water flux after 30 min filtration for 8 h of the experiment. This indicates a significant increase in anti-fouling performance when compared to the 25% flux decline observed for the neat TFC membrane, and to the 15% flux decline of those only modified by polydopamine or TiO2. This remarkable anti-fouling behaviour is attributed to an improved and uniform hydrophilicity, due to the presence of TiO2 and to the regular nanosized papillae structure of the polydopamine-TiO2 coating. Furthermore, since dopamine-modified TiO2 has visible light-induced photocatalytic properties, the membrane’s photocatalytic performance was also tested in light conditions. However an increase of flux and decrease of retention were observed after 24 h of continuous illumination, indicating that light may also affect the top layer of the membrane.
منابع مشابه
Nanofiltration Membrane with a Mussel-Inspired Interlayer for Improved Permeation Performance.
A mussel-inspired interlayer of polydopamine (PDA)/polyethylenimine (PEI) is codeposited on the ultrafiltration substrate to tune the interfacial polymerization of piperazine and trimesoyl chloride for the preparation of thin-film composite (TFC) nanofiltration membranes (NFMs). This hydrophilic interlayer results in an efficient adsorption of piperazine solution in the substrate pores. The sol...
متن کاملPreparation and Characterization of CA−PEG−TiO2 Membranes: Effect of PEG and TiO2 on Morphology, Flux and Fouling Performance
Modified cellulose acetate (CA) membranes were prepared by dissolving the polymers in a mixture of acetone (AC) and N, N dimethylacetamide (DMAc) (70:30) solvent and deionized (DI) water was used in the coagulation bath. The introduction of polyethylene glycol (PEG) additive and TiO2 nanoparticles (NPs) into the casting solution has changed the structures of the resulting membranes during the p...
متن کاملNanoscale engineering of low-fouling surfaces through polydopamine immobilisation of zwitterionic peptides.
We report a versatile approach for the design of substrate-independent low-fouling surfaces via mussel-inspired immobilisation of zwitterionic peptides. Using mussel-inspired polydopamine (PDA) coatings, zwitterionic glutamic acid- and lysine-based peptides were immobilised on various substrates, including noble metals, metal oxides, polymers, and semiconductors. The variation of surface chemis...
متن کاملShort-term adhesion and long-term biofouling testing of polydopamine and poly(ethylene glycol) surface modifications of membranes and feed spacers for biofouling control.
Ultrafiltration, nanofiltration membranes and feed spacers were hydrophilized with polydopamine and polydopamine-g-poly(ethylene glycol) surface coatings. The fouling propensity of modified and unmodified membranes was evaluated by short-term batch protein and bacterial adhesion tests. The fouling propensity of modified and unmodified membranes and spacers was evaluated by continuous biofouling...
متن کاملColour-Value Based Method for Polydopamine Coating-Stability Characterization on Polyethersulfone Membranes
Porous polyethersulfone membranes as used in oenology were investigated in order to evaluate temperature-dependent permeances in a temperature range from 10 to 35 °C. A temperature correction factor was determined for this type of membrane to get accurate and comparable results for further developments. Moreover, the membranes were modified with a bio-inspired polydopamine coating in order to r...
متن کامل